Explanations of why nocturnal insects fly erratically around fires and lamps have included theories of “lunar navigation” and “escape to the light”. However, without three-dimensional flight data to test them rigorously, the cause for this odd behaviour has remained unsolved. We employed high-resolution motion capture in the laboratory and stereo-videography in the field to reconstruct the 3D kinematics of insect flights around artificial lights. Contrary to the expectation of attraction, insects do not steer directly toward the light. Instead, insects turn their dorsum toward the light, generating flight bouts perpendicular to the source. Under natural sky light, tilting the dorsum towards the brightest visual hemisphere helps maintain proper flight attitude and control. Near artificial sources, however, this highly conserved dorsal-light-response can produce continuous steering around the light and trap an insect. Our guidance model demonstrates that this dorsal tilting is sufficient to create the seemingly erratic flight paths of insects near lights and is the most plausible model for why flying insects gather at artificial lights. It is unclear why flying insects congregate around artificial light sources. Here, the authors use high-speed videography and motion-capture, finding that insects fly perpendicular to light sources due to a disruption of the dorsal light response.
This is an automated archive made by the Lemmit Bot.
Original Title: TIL insects aren’t actually attracted to light but try to keep it above their backs due to a built-in reflex called the Dorsal Light Response. This makes them turn their dorsum toward the light mistaking it for the sky which causes them to circle around artificial light sources